Single Pure - Polynomial Sketching

When sketching curves, remember to find where it crosses the *x*-axis and the *y*-axis. For quadratics find the coordinates of the vertex. Think about what happens to *y* when *x* is *very* positive and *very* negative.

Also remember that

- a factor of the form (x a) indicates a 'cut' at x = a,
- a factor of the form $(x a)^2$ indicates a 'touch' at x = a,
- a factor of the form $(x a)^3$ indicates an 'inflection point' at x = a.

Questions

- 1. Sketch the following quadratic curves:
 - (a) y = (x-3)(x+6).
 - (b) y = x(x-4).
 - (c) y = (3 x)(x + 1).
 - (d) $y = (x+2)^2$.
 - (e) y = (2x + 1)(x 3).
 - (f) y = -(x+3)(2-3x).
 - (g) y = 3(2x + 5)(x 2).
 - (h) $y = x^2 5x + 4$.
 - (i) $y = 2x^2 5x 12$.
 - (j) $y = 4x^2 8x 5$.
 - (k) $y = 6x^2 + 23x + 15$.
- 2. Sketch the following polynomial curves of order 3 (cubic) or higher:
 - (a) y = (x+2)(x-1)(x-6).
 - (b) y = x(x-3)(x+2).
 - (c) y = -(2x+1)(x-4)(x+5).
 - (d) y = (2-x)(x+1)(x-7).
 - (e) y = (2 x)(x 1)(6 + x).
 - (f) $y = (x+2)^2(x-1)$.
 - (g) $y = (x+4)(x-1)^3$.
 - (h) $y = -x^2(x+3)^2$.
 - (i) $y = (x + 4)(x 1)^2(3 x)$.
 - (j) $y = (2x + 5)(3x 4)^2$.
 - (k) $y = -x(2x-1)^2(3x-5)^3$.
- 3. Now, look at your curves. Figure out the equation of each curve from the sketch you have just drawn.